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Crustal Formation and Evolution: Primary, Secondary, Tertiary
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Mechanisms of Lithospheric Heat Transfer

Lithospheric conduction
.2 Mercury, Moon, Mars

Plate recycling Volcanic heat pipes

S. C. Solomon



GEOLOGIC UNITS

CRATERS
VOLCANICS

The Moon is the place
to study secondary crustal
formation processes in early
Solar System history.

-How do mare basalts form?
-What does this tell us about the
nature and evolution of the mantle?

Geology of the Moon,
Mercury and Mars:

“One-Plate Planets”
in contrast to Earth.

S. C. Solomon

PLANETARY HISTORY

o ///[,,

o—

MARS

?
PROCESSES

/
s

*IMPACT ] VOLCANISM ' ,, >
CRATERS , / A
| 7z |EARTH

|*TECTONICS / Ve
| ‘l/ e S R

ORIGIN
OF
PLANETS

1 L
1 T T T
4 3 2 1 PRESENT

BILLION YEARS AGO




Terrestrial Planet Comparative Planetology

Mars Mercury The Moon




Lunar Mare Volcanism
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The Lunar Samples
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Distinguishing, Characterizing Mare Basalt Units

Definition and
Characterization:
Carle Pieters,
Tom McCord,
John Adams,
Paul Lucey




Defining/Characterizing Mare Basalt Units
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Galileo, Clementine multispectral images
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Ages of Mare Basalts: Frequency Distribution/Flux
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Ages: When is Onset of Mare Basalt Volcanism?
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Mineralogy/Composition and Ages of Mare Basalts
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Duration of Mare Basalts
In Individual
Impact Basins
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FARSIDE NEARSIDE

RHEOLOGICAL
BOUNDARY

MANTLE

-Basaltic volcanism petrogenesis on a one-plate planet.
-Mare deposits: Sampling internal heat and composition.

=-17% of surface; NS/FS asymmetry; V = 107 km?3; ~1% of crust.
-Duration is ~3 b.y., but peak flux is early, in Imbrian (3.3-3.8).

-Very low mean flux, very high short-term flux.

-Mean flux 10-2 km?3/a, similar to Kilauea today.

-Single eruption may represent 30,000 years of mean flux.
-Wide diversity of basalt lithologies and mineralogies.
-Primary crust is a low-density crustal density barrier.

-Role of huge impacts in generation of mare basalts.

-Moon is cooling; lithosphere thickening with time.
-importance of instabilities in layered interior, aftermath!




Testing Models of Lunar Mare Basalt Petrogenesis:
Key to Understanding Lunar Chemical and Thermal History

-Early models dominated by
Al11-12 returned samples.
-Later models more complex,
still sample dominated.

(Taylor et al., 2006)

-Assess models linked to other
geological processes (impact),

(C. Pieters) 9€OPhysical, remote sensing data.




Crustal Thickness Differences Control NS/FS Mare Asymmetry
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1. Clementine altimetry data revealed
depth of farside SPA basin: Very deep.

2. Thin crust on basin floor.

3. Little maria on floor of basin.
(Zuber et al., 1994)

1. Buoyant diapirs
rise to density trap.

2. Overpressurize,
propagate dikes into
crust, toward surface.
3. Thinner crust on
nearside permits

easy access to surface

Clementine Topographic Map of the Moon

Equal-area projection

kilometers




Impact Basin Pressure-Release Melting and

(Elkins-Tanton et al., 2004;

Associated Secondary Convection (Eins Tanton et al, 2008;
Impact basin formation.
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1. Mantle in situ pressure-release melting:
Instantaneous; near basin formation.

2. Uplift-induced secondary convection,
adiabatic melting: Lasts up to 350 m.y.

Basin collapse, isotherm uplift.

ORIENTALE BASIN
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Enhanced KREEP Layer in Procellarum KREEP Terrain
(PKT) Explains Generation, Distribution, Emplacement

(Wieczorek and Phillips, 2000 )

. PKT makes up ~16% of lunar surface.

. But, >60% of mare basalts occur there.

. Cause and effect: KREEP->mare basalts.

. KREEP layer heat partially melts mantle.

. Begins immediately, continues to present.
. Source becomes deeper with time.
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Initially Unstable Stratification:
Large-Scale Overturn and Aftermath (Hess and Parmentier, 1995 )
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Magma Ocean Cumulates
(dense ilmenite-rich cumulates
with high concentration of
incompatible radioactive elements)

(olivine-orthopyroxene cumulates;
later-crystallized, denser,
more Fe-rich compositions at top)

Primitive Lunar interior

-The Prelude-
1. Lunar Magma Ocean (LMO) crystallization.
2. Forms chemically stratified interior.
3. Cumulate layers are gravitationally unstable.
4. Rayleigh-Taylor instabilities cause dense
cumulates to sink toward center of Moon.

-The Aftermath-
5. Dense cumulates form core.
6. Ilmenite-rich cumulate core undergoes
radioactive heating, melts overlying mantle.
7. Thermal plumes rise into chemically
stratified surroundings; mixing, homogenization.
8. Melting at top of mixed layer produces
mare basalts.
9. Onset time is post-overturn, duration is long.

neutral buoyancy level

layer 7%

()
peridotite )
mantle

ilmenite T T '|‘

cumulate . .
COte radiogenic heat from core




Ongoing Key Tests for Mare Basalt Petrogenesis Models
-Duration of mare basalt emplacement:
-Lunar-wide.
-Within individual impact basins.
-Mineralogy of mare basalts:
-Time and space distribution.
-Relation to crustal terrains (e.g., PKT).
-Volumes of basalt eruptions and depths.

-Styles of mare basalt activity:
-Deep interior, upper mantle, crustal.
-Lunar farside mare basalt record.

-International armada: Provides critical data!
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